Lower Bounds for Approximating the Matching Polytope

نویسنده

  • Makrand Sinha
چکیده

We prove that any extended formulation that approximates the matching polytope on nvertex graphs up to a factor of (1 + ε) for any 2 n ≤ ε ≤ 1 must have at least ( n α/ε ) defining inequalities where 0 < α < 1 is an absolute constant. This is tight as exhibited by the (1 + ε) approximating linear program obtained by dropping the odd set constraints of size larger than (1 + ε)/ε from the description of the matching polytope. Previously, a tight lower bound of 2Ω(n) was only known for ε = O ( 1 n ) [Rot14, BP15] whereas for 2 n ≤ ε ≤ 1, the best lower bound was 2Ω(1/ε) [Rot14]. The key new ingredient in our proof is a close connection to the non-negative rank of a lopsided version of the unique disjointness matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The matching polytope does not admit fully-polynomial size relaxation schemes

The groundbreaking work of Rothvoß [2014] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the LP inapproximability of the matching problem: for fixed 0 < ε < 1, every (1 − ε/n)-approximating LP requires an...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixe...

متن کامل

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

Uncapacitated Flow-based Extended Formulations

An extended formulation of a polytope is a linear description of this polytope using extra variables besides the variables in which the polytope is defined. The interest of extended formulations is due to the fact that many interesting polytopes have extended formulations with a lot fewer inequalities than any linear description in the original space. This motivates the development of methods f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017